- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
McCormick, Theresa M. (3)
-
Rettig, Irving D. (3)
-
Beres, Joshua J. (1)
-
Brauer, Jacob B. (1)
-
Clark, Jennifer L. (1)
-
Detty, Michael R. (1)
-
Hill, Jackie E. (1)
-
Luo, Wentai (1)
-
Ohulchanskyy, Tymish Y. (1)
-
Van, Jackson (1)
-
Ziniuk, Roman (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rettig, Irving D.; Van, Jackson; Brauer, Jacob B.; Luo, Wentai; McCormick, Theresa M. (, Dalton Transactions)Tellurorhodamine, 9-mesityl-3,6-bis(dimethylamino)telluroxanthylium hexafluorophosphate ( 1 ), photocatalytically oxidizes aromatic and aliphatic silanes and triphenyl phosphine under mild aerobic conditions. Under irradiation with visible light, 1 can react with self-sensitized 1 O 2 to generate the active telluroxide oxidant ( 2 ). Silanes are oxidized to silanols and triphenyl phosphine is oxidized to triphenyl phoshine oxide either using 2 , or 1 with aerobic irradiation. Kinetic experiments coupled with a computational study elucidate possible mechanisms of oxidation for both silane and phosphine substrates. First-order rates were observed in the oxidation of triphenyl phosphine and methyldiphenyl silane, indicating a substitution like mechanism for substrate binding to the oxidized tellurium( iv ). Additionally, these reactions exhibited a rate-dependence on water. Oxidations were typically run in 50 : 50 water/methanol, however, the absence of water decreased the rates of silane oxidation to a greater degree than triphenyl phosphine oxidation. Parallel results were observed in solvent kinetic isotope experiments using D 2 O in the solvent mixture. The rates of oxidation were slowed to a greater degree in silane oxidation by 2 ( k H / k D = 17.30) than for phosphine ( k H / k D = 6.20). Various silanes and triphenyl phosphine were photocatalytically oxidized with 1 (5%) under irradiation with warm white LEDs using atmospheric oxygen as the terminal oxidant.more » « less
-
Clark, Jennifer L.; Hill, Jackie E.; Rettig, Irving D.; Beres, Joshua J.; Ziniuk, Roman; Ohulchanskyy, Tymish Y.; McCormick, Theresa M.; Detty, Michael R. (, Organometallics)
An official website of the United States government
